New York / permanent /
This is a high-growth technology startup offering a customer segmentation platform on Snowflake and BigQuery that is changing the way businesses acquire, retain, and win-back their customers. We are a completely bootstrapped and profitable startup with clients like Indeed, Google, and Uber.
Our Mission ????
Unlock the value of Cloud Data to make it drive massive, real world impact.
How we work ????
About the Position
We are looking for an outstanding Associate Data Science Engineer that wants to learn how to combine the best of strategy and machine learning to product outsized business impact. This role will have the opportunity to learn how to apply machine learning / artificial intelligence models to some of the most important problems businesses face.
Overall Responsibilities:
What You Will Be Doing: A Sample Day in the Life of a ADSE
8:30-9am, Planning: Plan out the day and post your top 3 goals to our daily-standup channel on Slack. Coordinate with team members where needed.
9-11am Deep Work: Prototype a minimum viable logistic regression model in a notebook to predict whether a particular segment of customers is likely to request a refund for their purchase in the next 14 days based on features like prior returns, use of offer codes and whether they purchased on mobile or desktop.
11am-11:30am Internal Team Meeting: Review a Tech Spec presented by the Software Engineering team on how we could generalize a segment performance evaluation metric on an automated basis. Discuss specific client instances that would help inform the engineering team’s design.
11:30-12pm Client Meeting #1: Present the findings you prepared yesterday for a segmentation model that incorporates purchase recency, frequency, and basket size. Walk through data distributions, correlations and other important visualizations to build consensus with the client on the segmentation thresholds.
12-12:30pm Lunch & Learn: Watch a team member teach the basics of Kubernetes and how it supports our tech stack at various levels while you munch on lunch.
12:30-2pm Segmentation Modeling: Follow up on the feedback received from Client Meeting #1 to apply the new segmentation thresholds. Submit for code review to another team member.
2-2:30pm Debugging Session: Pair programming with a teammate to diagnose and fix a data pipeline issue. Share the results of your findings with the broader team and add alerts to catch this error preventatively in the future.
2:30-3pm Performance Analysis: Analyze the results of the existing segments running across Marketo and Google AdWords. Collect notes to present later at a client meeting.
3-3:30pm Client Meeting #2: Review the performance of existing segments with a client for statistically significant results. Make suggestions for increasing media spend for successful segments or otherwise pivot that segment to a new channel like email for a second experiment.
3:30-4pm Pushing to Production: Incorporate feedback on the code you submitted for review at 2pm. Ping the team member that reviewed your code for a quick clarification, and then resubmit for final sign-off before pushing code to production.
4-5pm Presentation Development: Incorporate the results of the regression model this morning into a few slides to review insights and findings before proceeding with further refining feature engineering and algorithm selection.
5-5:30pm Messages: Answer any open questions on Slack or Email from clients and other team members before signing off for the day.
Requirements
About You
What Makes You Standout
We are a collaborative team that strongly believes in taking the learner's mindset to everything we do. This role will have the opportunity to learn how to apply machine learning / artificial intelligence models to some of the most important problems businesses face.
By joining our team, we hope you will change the trajectory of your professional career and that of our business.
Benefits
Meritocracy ????
Generous Time-off ????
Platinum Benefits ????????????
Learn and Grow ??